• We investigate the dynamics of pollutants and nutrients in the environment.

  • We elucidate processes and mechanisms in the field and laboratory.

  • Nanogeosciences: exploring the nanoscale to understand processes of global relevance.

  • We use models to quantify processes and mechanisms.

News

Latest publications

The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession

Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.

Maria Pinto, Teresa M. Langer, Thorsten Hüffer, Thilo Hofmann, Gerhard J. Herndl
2019 - PloS one, 14: 1-20

Mineralogy and weathering of realgar-rich tailings at a former As-Sb-Cr mine at Lojane, North Macedonia

In the Lojane area (North Macedonia) ores of Sb (stibnite), As (realgar), and Cr (chromite) were mined and processed in a metallurgical plant until 1979. Over one million tons of flotation tailings containing As, Sb, and other hazardous substances are located in an open dump site for flotation waste created by the mine. The tailings site is completely unprotected, and its orange color reflects a very high concentration of arsenic (fine-grained realgar superficially altered to pararealgar). In order to better understand the weathering behavior of these tailings, which is necessary to evaluate the environmental risks (mainly from the mobilization of As-Sb-Cr), solid waste material was sampled and studied from the chemical and mineralogical point of view. The material was characterized by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasmaoptical emission spectrometry (ICP-OES), X-ray diffraction analysis (both single crystal and powder), scanning electron microscopy (SEM) with energy-dispersive microanalysis (EDX), Raman spectroscopy, and transmission electron microscopy (TEM) with selected area electron diffraction (SAED), energy-dispersive X-ray analysis (EDX), and electron energy loss spectrometry (EELS). The studied tailings material is comprised mostly of well-crystallized realgar, gypsum, and quartz, and minor amounts of stibnite, pararealgar, chromite, and sulfur. Very minor pyrite is found within quartz aggregates. The most abundant secondary phase, which forms thin coatings around realgar and stibnite grains, is an As-Sb-Fe-Ca-(Ni)-oxide/hydroxide in which the As:Sb ratio varies from ca. 2:1 to 1:2.2 and Fe contents are variable. Antimony-dominant variants of this oxide also form larger homogeneous grains up to 500 lm in size, characterized by broad dehydration cracks suggesting original formation as a gel. Both As-rich and -poor variants were identified as members of the rom´eite group. EELS showed that all the Fe is ferric. Further secondary phases originated from the weathering of realgar, stibnite, and other primary phases are As-bearing sulfur, scorodite (often slightly Sb-bearing, locally common), arsenolite, ‘‘limonite’’, pickeringite (Ni- and Febearing), alunogen, and annabergite. The weathering of primary sulfides in the flotation tailings at Lojane proceeded under mostly oxidizing, acidic, and temporarily wet conditions. Highly acidic conditions on the surface of the tailings dump imply dissolution of arsenolite and scorodite, thus causing contamination of the environment and high mobility of arsenic.

Tamara Dordevic, Uwe Kolitsch, Todor Serafimovski, Goran Tasev, Nathalie Tepe, Michael Stger-Pollach, Thilo Hofmann, Blazo Boev
2019 - The Canadian Mineralogist, 57: 1-21

Response to the Letter to the Editor Regarding Our Feature “Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris”

Nanna B. Hartmann, Thorsten Hüffer, Richard C. Thompson, Martin Hassellöv, Anja Verschoor, Anders E. Daugaard, Sinja Rist, Therese Karlsson, Nicole Brennholt, Matthew Cole, Maria P. Herrling, Maren C. Hess, Natalia P. Ivleva, Amy L. Lusher, Martin Wagner
2019 - Environmental Science & Technology, 53: 4678−4679

Lecture series

Some like it hot; the (geo)microbiology of the nuclear fuel cycle

Prof. Dr. Jonathan R. Lloyd
Professor of Geomicrobiology, School of Earth and Environmental Sciences, The University of Manchester, UK
24.06.2019
16:30 h
Eberhard Clar-Saal (2B 204), Althanstrasse 14 UZA II, 1090 Vienna