New publication in Particle and Fibre Toxicology: Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces

31.01.2020

Chrysotile asbestos is a carcinogenic mineral that has been abundantly used in different industrial and consumer applications. The fibers’ toxicity is partly goverend by the formation of highly reative radicals by active surface sites.

Stephan Kraemer from EDGE together with the former PhD student Martin Walter and university assistant Walter Schenkeveld investigated these reactive sites on chrysotile asbestos surfaces, in cooperation with the collegues Lars Gille and Gerald Geroldinger from VetMed Vienna and Michael Reissner from TU Vienna.

The authors identified tetrahedrally coordinated Fe on the surface of chrysotile asbestos as the only relevant site in the formation of the highly reactive and toxic hydroxyl radicals, which readily damage DNA, proteins and lipids and hence contribute to the pathogenicity of the fibers. Fe added to chrysotile fibers increased the formation of hydroxyl radicals only when it became incorporated and coordinated into tetrahedral vacancy sites on asbestos surfaces.

Link: