• We investigate pollutants and nutrients in the environment.

  • We elucidate processes and mechanisms in the field and laboratory.

  • We explore biochemical reactions that shape the environment.

  • We study DNA preservation in rocks to investigate environmental biomes.

  • We explore the nanoscale to understand processes of global relevance.

  • We use models to quantify processes and mechanisms.

News

Latest publications

Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB

Low bioavailability of iron due to poor solubility of iron(hydr)oxides limits the growth of microorganisms and plants in soils and aquatic environments. Previous studies described accelerated dissolution of iron(hydr)oxides under continuous illumination, but did not distinguish between photoreductive dissolution and non-reductive processes in which photogenerated Fe(II) catalyzes ligand-controlled dissolution. Here we show that short illuminations (5–15 min) accelerate the dissolution of iron(hydr)oxides by ligands during subsequent dark periods under anoxic conditions. Suspensions of lepidocrocite (Lp) and goethite (Gt) (1.13 mM) with 50 μM EDTA or DFOB were illuminated with UV-A light of comparable intensity to sunlight (pH 7.0, bicarbonate-CO2 buffered solutions). During illumination, the rate of Fe(II) production was highest with Gt-EDTA; followed by Lp-EDTA > Lp-DFOB > Lp > Gt-DFOB > Gt. Under anoxic conditions, photochemically produced Fe(II) increased dissolution rates during subsequent dark periods by factors of 10–40 and dissolved Fe(III) reached 50 μM with DFOB and EDTA. Under oxic conditions, dissolution rates increased by factors of 3–5 only during illumination. With DFOB dissolved Fe(III) reached 35 μM after 10 h of illumination, while with EDTA it peaked at 15 μM and then decreased to below 2 μM. The observations are explained and discussed based on a kinetic model. The results suggest that in anoxic bottom water of ponds and lakes, or in microenvironments of algal blooms, short illuminations can dramatically increase the bioavailability of iron by Fe(II)-catalyzed ligand-controlled dissolution. In oxic environments, photostable ligands such as DFOB can maintain Fe(III) in solution during extended illumination.

Jagannath Biswakarma, KyounglimKang, Walter D.C.Schenkeveld, Stephan M.Kraemer, Janet G.Hering. Stephan J.Hug
2021 - Chemosphere, 263: 128188

Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer

In a number of laboratory studies, sulfidated nanoscale zero-valent iron (S-nZVI) particles showed increased reactivity, reducing capacity, and electron selectivity for Cr(VI) removal from contaminated waters. In our study, core-shell S-nZVI particles were successfully injected into an aquifer contaminated with Cr(VI) at a former chrome plating facility. S-nZVI migrated towards monitoring wells, resulting in a rapid decrease in Cr(VI) and Crtot concentrations and a long-term decrease in groundwater redox potential observed even 35 m downstream the nearest injection well. Characterization of materials recovered from the injection and monitoring wells confirmed the presence of nZVI particles, together with iron corrosion products. Chromium was identified on the surface of the recovered iron particles as Cr(III), and its occurrence was linked to the formation of insoluble chromium-iron (oxyhydr)oxides such as CrxFe(1−x)(OH)3(s). Injected S-nZVI particles formed aggregates, which were slowly transformed into iron (oxyhydr)oxides and carbonate green rust. Elevated contents of Fe0 were detected even several months after injection, indicating good S-nZVI longevity. The sulfide shell was gradually disintegrated and/or dissolved. Geochemical modelling confirmed the overall stability of the resulting Cr(III) phase at field conditions. This study demonstrates the applicability of S-nZVI for the remediation of a Cr(VI)-contaminated aquifer.

Miroslav Brumovský, Jana Oborná, Petr Lacina, Michal Hegedüs, Ondra Sracek, Jan Kolařík, Martin Petr, Josef Kašlík, Thilo Hofmann, Jan Filip
2020 - Journal of Hazardous Materials, 405: 124665

Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns

Emissions of Ce from anthropogenic activities (anthropogenic Ce) into urban wastewater systems and the environment result from its widespread industrial use (abrasives, catalysts, nanotechnology). Because Ce in sewage sludge can also be of geogenic origin, the quantification of anthropogenic Ce in sewage sludge remains elusive. In this study, we evaluated the suitability of Ce oxidation state and rare earth element (REE) patterns for the quantification of anthropogenic Ce fractions in sewage sludge. A diverse set of soil samples served to gain baseline information on geogenic Ce. Geogenic Ce in the soils was characterized by high Ce(III) fractions (≥70%) and their REE patterns were comparable to the REE patterns of the upper continental crust. The sewage sludges contained on average ∼80% Ce(IV) (range 18–108%), pointing to the importance of anthropogenic inputs of Ce(IV). The quantification of the anthropogenic Ce fraction based on Ce oxidation state, however, was associated with considerable uncertainty because geogenic and anthropogenic Ce cannot exclusively be assigned to Ce(III) and Ce(IV), respectively. The REE patterns of most sewage sludges indicated a clear enrichment of Ce compared to heavier REE. Based on the assumption that the industrially used Ce is free of (most) other REE, we estimated the fraction of anthropogenic Ce in the sludges based on individual Ce/REE ratios. For the individual sludges the anthropogenic contributions were very variable (10–100%) but consistent fractions were obtained for individual sludges when calculated based on Ce/Dy (dysprosium), Ce/Er (erbium) and Ce/Eu (europium) ratios. Electron microscopy analysis of sludges dominated by anthropogenic Ce revealed that the Ce was mostly contained in nanoscale particles devoid of elements characteristic of Ce-bearing minerals. Thus, anthropogenic Ce contents derived from REE patterns may be used to validate current mass flow models for engineered CeO2 nanoparticles.

Alexander Gogos, Jonas Wielinski, Andreas Voegelin, Frank von der Kammer, Ralf Kaegi
2020 - Water Research X, 9: 100059

Lecture series

The role of human behaviour in plastic pollution

Prof. Dr. Sabine Pahl
Fakultät für Psychologie, Universität Wien
21.01.2021
17:00 h
Online