The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

5 Publications found
  • A critical evaluation of short columns for estimating the attachment efficiency of engineered nanomaterials in natural soils

    Knapp Karin Norrfors, Vesna Micić, Olga Borovinskaya, Frank von der Kammer, Thilo Hofmann, Geert Cornelis
    2021 - Environmental Science: Nano, in press


    Short, saturated packed columns are used frequently to estimate the attachment efficiency (α) of engineered nanomaterials (ENMs) in relatively homogeneous porous media, but a combined experimental and theoretical approach to obtain α-values for heterogeneous natural soils has not yet been agreed upon. Accurately determined α-values that can be used to study and predict ENM transport in natural soils should vary with ENM and soil properties, but not with experimental settings. We investigated the effect of experimental conditions, and used different methods to obtain soil parameters, essential to calculate α. We applied 150 different approaches onto 52 transport experiments using short columns with 5 different natural soils and 20 and 80 nm gold- or 27 nm silver sulphide ENMs. The choice of column end-filter material and pore size appeared critical to avoid overestimating α owing to filter – ENM interactions and/or incomplete saturation of the column. Using a low ionic strength (4.4 x 10-5 mol L-1) artificial rain water as an aqueous medium avoided ENM homo- or heteroaggregation in all soils, as confirmed by single-particle inductively coupled plasma - time of flight mass spectrometry. ENM breakthrough curves could be modelled using colloid filtration theory assuming irreversible attachment only. α-values calculated from this model, having the grain size represented by a single average size, accounting for dispersivity and effective porosity based on a prior inert tracer test, explained up to 42 % of the variance in α as revealed by partial least squares analysis. However, column length and dispersivity remained as important experimental parameters, which calls for further standardisation efforts of column tests with ENMs in natural soils, preferably cross-validated with batch tests.

  • Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB

    Jagannath Biswakarma, KyounglimKang, Walter D.C.Schenkeveld, Stephan M.Kraemer, Janet G.Hering. Stephan J.Hug
    2021 - Chemosphere, 263: 128188


    Low bioavailability of iron due to poor solubility of iron(hydr)oxides limits the growth of microorganisms and plants in soils and aquatic environments. Previous studies described accelerated dissolution of iron(hydr)oxides under continuous illumination, but did not distinguish between photoreductive dissolution and non-reductive processes in which photogenerated Fe(II) catalyzes ligand-controlled dissolution. Here we show that short illuminations (5–15 min) accelerate the dissolution of iron(hydr)oxides by ligands during subsequent dark periods under anoxic conditions. Suspensions of lepidocrocite (Lp) and goethite (Gt) (1.13 mM) with 50 μM EDTA or DFOB were illuminated with UV-A light of comparable intensity to sunlight (pH 7.0, bicarbonate-CO2 buffered solutions). During illumination, the rate of Fe(II) production was highest with Gt-EDTA; followed by Lp-EDTA > Lp-DFOB > Lp > Gt-DFOB > Gt. Under anoxic conditions, photochemically produced Fe(II) increased dissolution rates during subsequent dark periods by factors of 10–40 and dissolved Fe(III) reached 50 μM with DFOB and EDTA. Under oxic conditions, dissolution rates increased by factors of 3–5 only during illumination. With DFOB dissolved Fe(III) reached 35 μM after 10 h of illumination, while with EDTA it peaked at 15 μM and then decreased to below 2 μM. The observations are explained and discussed based on a kinetic model. The results suggest that in anoxic bottom water of ponds and lakes, or in microenvironments of algal blooms, short illuminations can dramatically increase the bioavailability of iron by Fe(II)-catalyzed ligand-controlled dissolution. In oxic environments, photostable ligands such as DFOB can maintain Fe(III) in solution during extended illumination.

  • Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years

    Gabriel Sigmund, Cristina Santín, Marc Pignitter, Nathalie Tepe, Stefan H. Doerr, Thilo Hofmann
    2021 - Communications Earth & Environment, 2: 68


    Globally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.

  • Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS

    Stephanie Laughton, Adam Laycock, Garret Bland, Frank von der Kammer, Thilo Hofmann, Elizabeth A. Casman, Gregory V. Lowry
    2021 - Analytical and Bioanalytical Chemistry, 413: 299–314


    The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.

  • Towards more Sustainable Peptide- based Antibiotics: Stable in Human Blood, Enzymatically Hydrolyzed in Wastewater?

    Michael Zumstein, Kathrin Fenner
    2021 - CHIMIA International Journal for Chemistry, 75: 267-271


    The emergence and spread of antibiotic resistance is a major societal challenge and new antibiotics are needed to successfully fight bacterial infections. Because the release of antibiotics into wastewater and downstream environments is expected to contribute to the problem of antibiotic resistance, it would be beneficial to consider the environmental fate of antibiotics in the development of novel antibiotics. In this article, we discuss the possibility of designing peptide-based antibiotics that are stable during treatment (e.g. in human blood), but rapidly inactivated through hydrolysis by peptidases after their secretion into wastewater. In the first part, we review studies on the biotransformation of peptide-based antibiotics during biological wastewater treatment and on the specificity of dissolved extracellular peptidases derived from wastewater. In the second part, we present first results of our endeavour to identify peptide bonds that are stable in human blood plasma and susceptible to hydrolysis by the industrially produced peptidase Subtilisin A.

Book chapters and other publications

1 Publication found
  • New guidance brings clarity to environmental hazard and behaviour testing of nanomaterials

    Elijah Joel Petersen, Greg Gerard Goss, Frank von der Kammer, Alan James Kennedy
    2021 - Nature Nanotechnology, 16: 482–483