Publications
Showing entries 41 - 60 out of 664
2023
Heß, M., Völker, C., Nicole, B., Herrling, M. P., Hollert, H., Ivleva, N., Kerpen, J., Laforsch, C., Löder, M., Schiwy, S., Schmitz, M., Stephan, W., & Hüffer, T. (2023). Microplastic in the Aquatic Environment. In J. Kramm, & C. Völker (Eds.), Living in the Plastic Age: Perspectives from Humanities, Social Sciences, and Environmental Sciences (pp. 51-86). Campus. https://doi.org/10.12907/9783593449029
Brumovský, M., Micic´, V., Oborná, J., Filip, J., Hofmann, T., & Tunega, D. (2023). Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination. Journal of Hazardous Materials, 442(1), Article 129988. https://doi.org/10.1016/j.jhazmat.2022.129988
Zhu, M., Zhang, Z., Zhang, T., Hofmann, T., & Chen, W. (2023). Eco-Corona Dictates Mobility of Nanoplastics in Saturated Porous Media: The Critical Role of Preferential Binding of Macromolecules. Environmental Science & Technology, 57(1), 331-339. https://doi.org/10.1021/acs.est.2c07376
Castan, S., Sherman, A., Peng, R., Zumstein, M. T., Wanek, W., Hüffer, T., & Hofmann, T. (2023). Uptake, Metabolism, and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce. Environmental Science & Technology, 57(1), 168-178. https://doi.org/10.1021/acs.est.2c05660
Marazuela Calvo, M. A., Stockhausen, M., & Hofmann, T. (2023). Analytical strategies to measure gadolinium as a wastewater marker in surface and groundwater systems. MethodsX, 10, Article 101965. https://doi.org/10.1016/j.mex.2022.101965
Sherman, A., Masset, T., Wimmer, L., Dailey, L. A., Hüffer, T., Breider, F., & Hofmann, T. (2023). Inhalation of climbing shoe particles is highly relevant for the human exposure to rubber-derived chemicals in indoor facilities. https://doi.org/10.26434/chemrxiv-2023-r6t15
2022
Schwab, L., Rothe, F., McLagan, D., Alten, A., Krämer, S., Biester, H., & Wiederhold, J. G. (2022). Large extent of mercury stable isotope fractionation in contaminated stream sediments induced by changes of mercury binding forms. Frontiers in Environmental Chemistry, 3, Article 1058890. https://doi.org/10.3389/fenvc.2022.1058890
Walter, M., Schenkeveld, W. D. C., Tomatis, M., Schelch, K., Peter-Voroesmarty, B., Geroldinger, G., Gille, L., Bruzzoniti, M. C., Turci, F., Kraemer, S. M., & Grusch, M. (2022). The Potential Contribution of Hexavalent Chromium to the Carcinogenicity of Chrysotile Asbestos. Chemical Research in Toxicology, 35(12), 2335-2347. https://doi.org/10.1021/acs.chemrestox.2c00314
Pfohl, P., Bahl, D., Rückel, M., Wagner, M., Meyer, L., Bolduan, P., Battagliarin, G., Hüffer, T., Zumstein, M., Hofmann, T., & Wohlleben, W. (2022). Effect of Polymer Properties on the Biodegradation of Polyurethane Microplastics. Environmental Science & Technology, 56(23), 16873-16884. https://doi.org/10.1021/acs.est.2c05602
Henkel, C., Hüffer, T., & Hofmann, T. (2022). Polyvinyl Chloride Microplastics Leach Phthalates into the Aquatic Environment over Decades. Environmental Science & Technology, 56(20), 14507-14516. https://doi.org/10.1021/acs.est.2c05108
Maletić, S., Isakovski, M. K., Sigmund, G., Hofmann, T., Hüffer, T., Beljin, J., & Rončević, S. (2022). Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. Science of the Total Environment, 843, Article 157122. https://doi.org/10.1016/j.scitotenv.2022.157122
Stetten, L., Hofmann, T., Proux, O., Landrot, G., Kaegi, R., & von der Kammer, F. (2022). Transformation of zinc oxide nanoparticles in freshwater sediments under oxic and anoxic conditions. Environmental Science: Nano, 9(11), 4255-4267. https://doi.org/10.1039/D2EN00709F
Taskula, S., Stetten, L., von der Kammer, F., & Hofmann, T. (2022). Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Nanomaterials, 12(19), Article 3307. https://doi.org/10.3390/nano12193307
McLagan, D., Biester, H., Navrátil, T., Krämer, S., & Schwab, L. (2022). Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses. Biogeosciences, 19(17), 4415–4429. https://doi.org/10.5194/bg-19-4415-2022
Marazuela Calvo, M. A., García-Gil, A., Garrido, E., Santamarta, J. C., Cruz-Pérez, N., & Hofmann, T. (2022). Assessment of geothermal impacts on urban aquifers using a polar coordinates-based approach. Journal of Hydrology, 612(B), Article 128209. https://doi.org/10.1016/j.jhydrol.2022.128209
Montaño, M. D., Cui, X., Mackevica, A., Lynch, I., von der Kammer, F., Lodge, R. W., Khlobystov, A. N., van den Brink, N. W., & Baccaro, M. (2022). Influence of dissolution on the uptake of bimetallic nanoparticles Au@Ag-NPs in soil organism Eisenia fetida. Chemosphere, 302, Article 134909. https://doi.org/10.1016/j.chemosphere.2022.134909
Zumstein, M., Battagliarin, G., Kuenkel, A., & Sander, M. (2022). Environmental Biodegradation of Water-Soluble Polymers: Key Considerations and Ways Forward. Accounts of Chemical Research, 55(16), 2163-2167. https://doi.org/10.1021/acs.accounts.2c00232
Pfohl, P., Wagner, M., Meyer, L., Domercq, P., Antonia, P., Hüffer, T., Hofmann, T., & Wohlleben, W. (2022). Environmental degradation of microplastics: How to measure fragmentation rates to secondary micro- and nanoplastic frag-ments and dissociation into dissolved organics. Environmental Science & Technology, 56(16), 11323-11334. https://doi.org/10.1021/acs.est.2c01228
Chaudhuri, S., Sigmund, G., Bone, S. E., Kumar, N., & Hofmann, T. (2022). Mercury Removal from Contaminated Water by Wood-Based Biochar Depends on Natural Organic Matter and Ionic Composition. Environmental Science & Technology, 56(16), 11354-11362. https://doi.org/10.1021/acs.est.2c01554
Walch, H., von der Kammer, F., & Hofmann, T. (2022). Freshwater suspended particulate matter-Key components and processes in floc formation and dynamics. Water Research, 220, Article 118655. https://doi.org/10.1016/j.watres.2022.118655
Showing entries 41 - 60 out of 664