The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

1 Publication found
  • A versatile test system to determine nanomaterial heteroagglomeration attachment efficiency

    Helene Walch, Nada Bašić, Antonia Praetorius, Frank von der Kammer, Thilo Hofmann
    2024 - Environmental Science: Nano, 11: 588-600


    Engineered and incidental nanomaterials are emerging contaminants of environmental concern. In aquatic systems, their transport, fate, and bioavailability strongly depend on heteroagglomeration with natural suspended particulate matter (SPM). Since particulate contaminants underlie different mechanisms than dissolved contaminants, harmonized, particle-specific test systems and protocols are needed for environmental risk assessment and for the comparability of environmental fate studies. The heteroagglomeration attachment efficiency (α_het) can parametrize heteroagglomeration in fate models which inform exposure assessment. It describes the attachment probability upon nanomaterial-SPM collision and reflects the physicochemical affinity between their surfaces. This work introduces a new versatile test system to determine α_het under environmentally relevant conditions. The test matrix combines model SPM analogs and an adjustable model hydrochemistry, both designed to represent the process-relevant characteristics of natural freshwater systems, while being standardizable and reproducible. We developed a stirred-batch method that addresses shortcomings of existing strategies for α_het determination and conducted heteroagglomeration experiments with CeO2 (<25 nm) as a model nanomaterial. Single-particle ICP-MS allowed working at environmentally relevant concentrations and determination of α_het values by following the decrease of non-reacted nanomaterial over time. The α_het values received for the model freshwater test matrix were evaluated against a natural river-water sample. Almost identical α_het values show that the model test system adequately reflects the natural system, and the experimental setup proved to be robust and in line with the theoretical concept for α_het determination. Combinations of natural SPM in model water and model SPM in natural water allowed further insight into their respective impacts. The α_het values determined for nano-CeO2 in the natural river water sample (0.0044-0.0051) translate to a travel distance of 143-373 km downstream until 50% is heteroagglomerated, assuming an average flow velocity of 5 km h-1 and an SPM concentration of 20-45 mg L-1. These half-lives illustrate the importance of heteroagglomeration kinetics.

Book chapters and other publications

No matching database entries were found.